Professional-Machine-Learning-Engineer 문제 46
You need to build classification workflows over several structured datasets currently stored in BigQuery. Because you will be performing the classification several times, you want to complete the following steps without writing code: exploratory data analysis, feature selection, model building, training, and hyperparameter tuning and serving. What should you do?
Professional-Machine-Learning-Engineer 문제 47
A Data Scientist needs to analyze employment data. The dataset contains approximately 10 million observations on people across 10 different features. During the preliminary analysis, the Data Scientist notices that income and age distributions are not normal. While income levels shows a right skew as expected, with fewer individuals having a higher income, the age distribution also show a right skew, with fewer older individuals participating in the workforce.
Which feature transformations can the Data Scientist apply to fix the incorrectly skewed data? (Choose two.)
Which feature transformations can the Data Scientist apply to fix the incorrectly skewed data? (Choose two.)
Professional-Machine-Learning-Engineer 문제 48
You are developing models to classify customer support emails. You created models with TensorFlow Estimators using small datasets on your on-premises system, but you now need to train the models using large datasets to ensure high performance. You will port your models to Google Cloud and want to minimize code refactoring and infrastructure overhead for easier migration from on-prem to cloud. What should you do?
Professional-Machine-Learning-Engineer 문제 49
A Machine Learning Specialist works for a credit card processing company and needs to predict which transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the probability that a given transaction may fraudulent.
How should the Specialist frame this business problem?
How should the Specialist frame this business problem?
Professional-Machine-Learning-Engineer 문제 50
You work for an online travel agency that also sells advertising placements on its website to other companies.
You have been asked to predict the most relevant web banner that a user should see next. Security is important to your company. The model latency requirements are 300ms@p99, the inventory is thousands of web banners, and your exploratory analysis has shown that navigation context is a good predictor.
You want to Implement the simplest solution. How should you configure the prediction pipeline?
You have been asked to predict the most relevant web banner that a user should see next. Security is important to your company. The model latency requirements are 300ms@p99, the inventory is thousands of web banners, and your exploratory analysis has shown that navigation context is a good predictor.
You want to Implement the simplest solution. How should you configure the prediction pipeline?
